

26.05.2011

Open Systems. No. 04, 2011. P.38-41.

Software Certification Without Source Codes

Alexander Barabanov, Alexey Markov, Andrei Fadin

NPO Echelon, Russia

Abstract. How to evaluate the security of programs in the absence of any source codes and
what needs to be done to lower risk when using them.

Keywords: software security, security code review, vulnerability, software testing.

Increases in vulnerability in programming systems are directly linked to their
high structural complexity as well as to the dynamism of versions and techniques,
which do not allow guaranteed evaluations of software security to be obtained within
an acceptable time. Evaluation of the conformity of software security requirements is
determined by certifying software certification for the absence of undeclared features
or, where there are no such requirements, by auditing the security of the code. In the
first case, the reference point is the Regulatory Document [1] of the Russian State
Technical Commission. In the second case, openly-accessible international
standards can be used: PCI DSS/PA-DSS, OWASP Top Ten, CWE.

The State Technical Commission’s regulatory document outlines the
requirements for programming documentation, the assigned condition controls and
the source code static and dynamic analyses, which constitute an essential part of
the certification test process [2]. In other cases, there may be no requirement for
software source code availability as, for example, is the case in Common Criteria
certification texts or the auditing of banking applications for PCI DSS matching
where, of course, national security is not an issue.

In practice, situations sometimes occur where software developers are not
able to create source codes in full – for example, where versions have been lost or
incorrectly modified, where external codes with licence restrictions have been used or
for reasons of confidentiality. In addition, software source codes may not be present
in an explicit form, either for the purposes of allowing direct code generation to be
used, or where the complex binary code transformations are not directly linked with
the program source codes.

Until recently, the black box test method (i. e. stress testing in abnormal
software mode) and the reverse engineering method (including binary code
disassembly with an attempt to simulate the logic of the original program application)
were the two basic approaches used to test software security in the absence of
source codes [3‒5].Both approaches are extremely time-consuming and are not
specified in regulatory documentation. However, alternatives do exist.

The following measures increase software assurance:

 evaluation of the options for high-quality software decompilation for the
carrying out of certification tests, taking into account the existing regulatory structure

 checking the core-image codes to allow security levels to be accurately
evaluated and decisions on possible risk reduction linked with software use to be
made

 evaluating options for applying additional information protection
measures, linked with the use of software not having source codes.

In any case, in the first instance, the risks and vulnerabilities of the resources
of the computer-based system must be evaluated, together with the corresponding
risks (including legal risks) linked with software component use where source codes
are not present. Evaluating the risks allows alternative options to be selected
(reduction, transfer, acceptance, refusal) and, in the case of their reduction, allows
measures for increasing software security to be adopted.

Vulnerability carries risks for data security only in cases where it can be
exploited. This needs to be established during testing. Where source codes are
absent, however, risk evaluation becomes much more difficult and an approach
based on external software links is then adopted.

Evaluating Decompilation Options

Platforms allowing high-quality decompilation and able to restore program
source codes whilst retaining full functional and information object hierarchy, its links
and control structure are now widely available. This is appropriate to programming
languages with intermediate representation in the form of byte-codes and virtual
machines for their execution – for example, the Oracle JVM (Java Virtual Machine),
familiar as a tool for implementing languages such as Java, NetRexx, Ruby (JRuby),
JavaScript (Rhino), Python (Jython), Groovy, PHP (Quercus), Clojure, Scala, etc.

In some cases, high-quality decompilation can be implemented for platforms.
In Net, where CLR (Common Language Runtime) is used, it is possible to enter
codes written in the ASP.Net, C#, Visual Basic. Net, C++/CLI, F#, J#, JScript. Net,
Windows PowerShell (and other) programming languages. The features of this
platform and others like it – for example, ActionScript Virtual Machine and Microsoft
P-CODE Virtual Machine – allow source codes to be compiled in intermediate high-
level binary representation (and not in microprocessor commands), which is already
converted into processor instructions at the execution stage.

In order to confirm usage options when certifying the program texts obtained
during decompilation, the Echelon Development and Production Centre conducts
software experimentation and undertakes research and certification testing in its
accredited test laboratories. The JVM (Java Virtual Machine), the Java programming
language and the CLR and C# environments were chosen as the programming
platforms. Test programs containing current (2010) vulnerabilities were also created.
Testing was undertaken on programs with source codes and decompilations. An
accredited “AK-VS” source code security analyser able to support international CWE
vulnerability classification was used to detect vulnerability.

For the JVM (Java) and Net (C#) platforms, the results revealed a high
correlation between the source codes and the codes obtained as a result of
decompilation (Table 1). Among other things, the ability to detect code vulnerability
was proven during the course of the experimentation. Basic checks (including report
compilation) for the absence of undeclared second level control features were also
carried out based on statistical analysis.

Table 1. Verification of decompilation options for running certification tests
and code audits

Options
Platform

JVM (Java) . NET (C#)

Decompilation option + +

Decompilation quality:

 semantic agreement

 syntactic agreement

100%

70%

100%

40%

Search for vulnerability in decompiled text 100% 100%

Recompilation from source codes obtained 100% 90%

Creation of functional object list 100% 100%

Creation of information object list 100% 100%

Construction of information matrix 86% 100%

Construction of control matrix 100% 100%

Creation of activation routes 80% 80%

The use of high-quality compilation allows 100% detection of source code
vulnerability and also guarantees the provision of high-level computer-based
certification reports. This raises a paradox concerning the shortcomings of the formal
requirements of regulatory documents – for example, a lack of success (in some
instances) in creating matrices and activation routes, despite successful detection of
all the vulnerability affecting the security system. The diagram shows an example of
semantic agreement and syntactic disagreement in a potentially dangerous software
fragment.

It must be pointed out, however, that in practice, high-quality compilation can
have various limitations, linked with code obfuscation (protection of code meshing
routes), partial data loss, etc.

Additional Run Code Checks

Where high-quality decompilation has been unsuccessful, it is helpful to record
all the source code imperfections and perform a test linked with the given risk
evaluation. The checks can be used to pursue the following aims:

 determination of the integrity of the software and its source, including a
check on licence validity

 identification of external interests
 control of the integrity of the software environment during installation, de-

installation and upgrading
 analysis of any known risks linked with internal and external components by

using open-access sources (security bulletins) and vulnerability, and exploitation data
bases.

Basic checks:

 licence control – a check of manufacturer and supplier details, their
presence in open-access registers and in software and software component
information repositories

 checks on external dependence, including the correspondence of lists of
actually-used external objects with declared versions – for objects (for example) such
as: virtual machines and application code readers; software-linking sub-programs;
cache servers, databases, web servers; dynamic link libraries; RPC target
components and interfaces (remote procedure activation)

 security bulletin search for information relating to vulnerability inherent in
the given objects

 installation/de-installation process checks linked with actually-used and
declared software component list correspondence checks

 upgrade process checks linked with actually-replaced and declared upgrade
component list correspondence checks

 checks on components and their internal dependence linked with actual and
declared software component list correspondence checks and checks on absent or
surplus software components (including integration elements)

 antivirus checks and vulnerability scans linked with checks on distribution
and the state of the software on installation.

The results of these checks can be produced as a final technical report, which
includes specific configuration recommendations when using the software.

Certainly, from the security standpoint, such an approach is as good as testing
the software for the absence of undeclared features, in accordance with level four
checks in which only the legal risks are determined. Consequently, it is possible to
outline the certification requirements for software not having source codes, for
example, in second and third class personal data information systems.

Installing Additional Protection Measures

In order to reduce the remaining risk to acceptable levels (determined by
specialists when analysing and controlling risk), additional equipment and measures
may be used to safeguard against risks linked with software not having source codes.

In addition to traditional protection mechanisms (back up, firewalls and
monitoring), it is possible to employ a range of special measures for securing data at
program application level (Table 2).

Table 2. Examples of measures to protect data at application level

Class of data protection
measure

Function in brief Examples

Firewalls at program
application level

Filtration of application layer
protocol requests sent to
potentially risky software

OWASP Web
Application Firewall,
AppGuard

Proxy servers

Intermediate link application
between potentially risky
software and other software
able to evaluate security
policy regulations

Myosotis, Pgpool

File system monitors and
registers, network traffic
interceptors and analysers;
process monitors; API
activation monitors

Investigates anomalies in
application behaviour

Process Monitor,
PortMon, DiskMon,
“Scanner VC”,
Wireshark; API
Monitor

Using filtration measures on given application layer protocols prevents
intruders of any kind from exploiting software vulnerability, for example, SQL
injections or cross-site scenario implementation. The application of firewalls,
including intellectual proxy servers, allows the volume of network protocol data
between potentially risky software and other programs to be controlled. If, for

example, program operation does not envisage any network protocol interaction, it is
recommended that potentially risky software be prohibited from sending and
receiving network protocol data. This reduces the likelihood of any vulnerability being
exploited.

Surveys undertaken on software not having source codes must include basic
function risk and use restrictions. Preliminary information can be obtained from a
range of open-access sources and instruction manuals. At the testing and trial stage,
software operation should be monitored by specialists and the results compared with
those recorded for standard software operation. This allows any anomalies in
software behaviour to be detected and any corresponding security risks to be
evaluated.

The measures put forward allow decisions to be made on the options for
installing and using programming systems not having a full complement of source
codes. These are interesting results, which testify to the possibility of carrying out
certification tests on the non-source code software developed in modern
programming systems. It is essential that the decompilation faults revealed are not
allowed to affect the capacity to detect potentially dangerous fragments and zones of
risk.

It is recommended that execution code checks be organised. Their
effectiveness in respect of security requirements should be commensurate with the
level four tests designed to check software for the absence of undeclared features.

In order to remove any remaining risk linked with the absence of source
codes, the introduction of further data protection measures at programming
application level is recommended.

Literature

1. Regulatory Document. Protection from Unauthorised Access to Data.
Part 1. Computer Software as a Means of Protecting Information. Control Level
Classification for the Absence of Undeclared Features. ‒ Russian State Technical
Commission, 1999.

2. Markov А. S., Мironov S. V., Tsirlov V. L. Detecting Vulnerability in Source
Codes // Open Systems, No. 12, 2005.

3. Eilan E. Reversing: Secrets of Reverse Engineering. ‒ Wiley City: Wiley
Publishing, 2005. ‒ 595 p.

4. Kalinovsky A. Covert Java: Techniques for Decompiling, Patching, and
Reverse Engineering ‒ Indianapolis: Sams, 2004. – 288 p.

5. Sutton M., Greene A., Amini P. Fuzzing: Brute Force Vulnerability
Discovery. ‒ Addison-Wesley Professional, 2007. – 576 p.

http://www.fstec.ru/_docs/doc_3_3_010.htm
http://www.fstec.ru/_docs/doc_3_3_010.htm
http://www.osp.ru/os/2005/12/380655/
http://www.osp.ru/os/2005/12/380655/

Alexander Barabanov, Аlexey Markov, Аndrei Fadin ‒ NPO Echelon, Moscow,
Russia.

Article URL: http://www.osp.ru/os/2011/04/13008784/
A. Barabanov, А. Markov, А. Fadin. Software Certification Without Source Codes. Open
Systems. 2011. №4. P.38-41.

© Оpen Systems, 1992‒2011. All rights reserved.

